
WordPress (WordPress.org) is a free and open-source content management system (CMS) written
in PHP and paired with a MySQL or MariaDB database. WordPress was originally created as a blog-
publishing system but has evolved to support other types of web content including more traditional
mailing lists and forums, media galleries, membership sites, learning management systems (LMS)
and online stores.

Examples

Minimal Cron
Run WP CLI On All Sites Within A Network
Hooks for assets
Updating post data on status transition
Filter one-liners
WP-CLI create post with custom tax
Hiding blocks from the block inserter

Troubleshooting

Sync the database schema
Troubleshooting local environment problems
Resolving composer.lock merge conflicts
Package type "library" is not supported

WordPress Importer Plugin
Knowledge

Nonces
Move a site to a new domain
Change root site
Blocks in Simple English
Filtering Block based content
Auto linking project toolchains
Performance Strategy

WordPress

Performance
WP-CLI

Installing wp-env

n. One that is representative of a group as a whole.
n. One serving as a pattern of a specific kind.
n. A similar case that constitutes a model or precedent.

Examples

Examples

Change the following:

Prefix: svd_

Minimal Cron

function svd_deactivate() {

	wp_clear_scheduled_hook('svd_cron');

}

add_action('init', function() {

	add_filter('cron_schedules', 'svd_schedule_cron');

	add_action('svd_cron', 'svd_run_cron');

	register_deactivation_hook(__FILE__, 'svd_deactivate');

	if (! wp_next_scheduled ('svd_cron')) {

		wp_schedule_event(time(), 'minute', 'svd_cron');

	}

});

function svd_schedule_cron($schedules) {

	$schedules['minute'] = array('interval' => 1 * MINUTE_IN_SECONDS, 'display' => __('Every 1

minute.', 'svd'));

	return $schedules;

}

function svd_run_cron() {

	// Do your stuff!

}

Examples

Run WP CLI On All Sites Within
A Network

update an option.

wp site list --field=url | xargs -I % wp --url=% option update [option name] [option value]

Examples

Quick reference for where to hook in styles and scripts:

Where Action

Admin admin_enqueue_scripts

Frontend wp_enqueue_scripts

Block editor (admin) enqueue_block_editor_assets

Blocks (front and admin) enqueue_block_assets

Don't register or enqueue scripts and styles in init, this will break WordPress updates and
unexpected things might happen.

Hooks for assets

Examples

You might be tempted to set the WP_Post properties (but this is an action), or use wp_update_post()
 but there is some hard-coded behaviour in wp_insert_post() that might affect your data.

So it's better to emulate wp_publish_post() .

Updating post data on status
transition

function action_on_future_to_publish($post) {

	global $wpdb;

	if (! wp_is_post_revision($post)) {

		// Update via the database to bypass wp_insert_post resetting the dates.

 // @see wp_publish_post()

		$data = [

			'post_modified' => $post->post_date,

			'post_modified_gmt' => $post->post_date_gmt,

];

		$wpdb->update($wpdb->posts, $data, ['ID' => $post->ID]);

		// After bypassing the WP caches, refresh the cache.

		clean_post_cache($post->ID);

	}

}

add_action('future_to_publish', 'action_on_future_to_publish', 10, 1);

Examples

Render links in content as HTML A elements:

Filter one-liners

add_filter('the_content', 'make_clickable');

Examples

wp mycpt create --tags='test1,test2'

WP-CLI create post with custom
tax

$tags = null;

if (isset($assoc_args['tags'])) {

	$tags = wp_parse_list($assoc_args['tags']);

	unset($assoc_args['tags']);

}

...

$command = "post create --porcelain " . assoc_args_to_str($assoc_args);

$id = WP_CLI::runcommand($command, ['return' => true]);

if (! (bool) $id) {

	WP_CLI::error('Post not saved!');

}

wp_set_object_terms($id, $tags, TAX_MYCPT_TAG);

WP_CLI::success(sprintf('Created post %s.', $id));

Examples

Hiding blocks allow the blocks to be used for existing content, but not for new content.

Javascript:

Hiding blocks from the block
inserter

function get_plugin_settings() {

	$disabled_blocks = [];

 $disabled_blocks[] = 'my/blockname';

	return [

		'disabledBlocks' => $disabled_blocks,

];

}

enqueue scripts hook:

	wp_localize_script(

		'myblocks-editor',

		'myBlocksSettings',

		get_plugin_settings()

);

import { addFilter } from '@wordpress/hooks';

// Define disabled blocks.

// If you need to rely on logic available only in PHP,

// pass this data using a global variable instead.

const DISABLED_BLOCKS = window.myBlocksSettings.disabledBlocks;

/**

 * Conditionally enable/disable insertion of blocks.

 *

 * Ensure sure this function runs BEFORE you register your blocks.

 *

 * @param {object} settings block type definition

 * @param {string} name name of the block type

 * @returns {object} block type settings

 */

function filterBlockRegistration(settings, name) {

	if (! DISABLED_BLOCKS.includes(name)) {

		return settings;

	}

	// Ensure there is a supports section

	if (undefined === settings.supports) {

		settings.supports = {};

	}

	// Disable the UI to add this block .

	// If the block is added in another way,

	// e.g. legacy, programmatically, copy-paste, it will still work.

	settings.supports.inserter = false;

	return settings;

}

addFilter(

	'blocks.registerBlockType',

	'myNamespace',

	filterBlockRegistration

);

Troubleshooting

Troubleshooting

In rare situations, the WordPress database schema might not match the schema expected by the
applications or plugin. For example switching to multisite, and the wp_users table is missing the
spam and deleted colums

To fix this issue locally, create a file in the mu-plugins folder such as mu-plugins/db-upgrade.php
with the following contents, and load the site:

After the page is loaded the file can be deleted.

Sync the database schema

<?php

require_once ABSPATH . 'wp-admin/includes/schema.php';

require_once ABSPATH . 'wp-admin/includes/upgrade.php';

dbDelta(wp_get_db_schema('global'));

Troubleshooting

A collection of troubleshooting tips to diagnose issues with a local environment that's not working
right.

1. Try wp cli info , if this fails then the issue is limited to WP CLI or PHP as this doesn't
touch the codebase / DB.

Troubleshooting local
environment problems

WP CLI Issues

Troubleshooting

composer update --lock fixes lock file when merging branches with .lock conflicts.

Resolving composer.lock merge
conflicts

Troubleshooting

You might see the following message after running composer:

This is a bug in oomphinc/composer-installers-extender >1.1.2 <= 2.0 and can be fixed by
downgrading to 1.1.2

Package type "library" is not
supported

Reading /Users/svandragt/.composer/auth.json

Reading /Users/svandragt/dev/_hm/siemens/milestones.local/vendor/composer/installed.json

Reading /Users/svandragt/.composer/vendor/composer/installed.json

Loading plugin OomphInc\ComposerInstallersExtender\Plugin_composer_tmp1

Package type "library" is not supported

Pin version to 1.1.2

composer require oomphinc/composer-installers-extender 1.1.2 --no-update --no-plugins

Update the plugin

composer update oomphinc/composer-installers-extender --no-plugins

Update dependencies

composer update oomphinc/composer-installers-extender

https://github.com/oomphinc/composer-installers-extender/issues/26

It has support for: deduplication (see below), mapping image urls
All imported posts haven import_id meta which is the ID they had in the import WXR.

Example

WordPress Importer Plugin

Post processing:

/**

 * Usage: IMPORT_POST_TYPES=blogpost,attachment wp import ...

 */

WP_CLI::add_hook('before_invoke:import', function () {

	add_filter('wp_import_posts', function ($posts) {

		if (getenv('IMPORT_POST_TYPES')) {

			$post_types = explode(',', getenv('IMPORT_POST_TYPES'));

			$post_types = array_map('trim', $post_types);

			$posts = array_filter($posts, function ($post) use ($post_types) {

				return in_array($post['post_type'], $post_types, true);

			});

			return $posts;

		}

		return $posts;

	});

});

https://github.com/WordPress/wordpress-importer/blob/master/src/class-wp-import.php#L1269

Knowledge is a familiarity, awareness, or understanding of someone or something, such as facts,
information, descriptions, or skills, which is acquired through experience or education by
perceiving, discovering, or learning.

Knowledge

Knowledge

WordPress nonces are not cryptographic nonces, as the latter are used only once, and the
former are not:

Nonces

Nonces are regenerated every 12h, but are valid for 24h, hence that code. (12h
= 1 tick, and they’re valid for two ticks)“

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://brain.vandragt.com/uploads/images/gallery/2020-05/image-1588328055896.png

Knowledge

Move a site workflow:

1. Delete existing domain mappings for the site.
2. wp search replace $old_url $new_url --all-tables; wp cache flush , avoiding trailing

slashes.
3. wp rewrite flush --url=$new_url; wp rewrite flush;

4. Login to the network site, edit the site, press Save Changes. (not sure why)
5. Verify site loads and login works.
6. re-add domain.
7. restart browsers because of cached redirects.

Move a site to a new domain

Knowledge

To change the root site in a multisite network:

Change root site

define('BLOG_ID_CURRENT_SITE', 1);

Plugins might not be compatbile with this change.

Knowledge

The following block types exist and this is what they do. I'm always getting confused by the
terminology, as I'm not a native English speaker and the terminology does not cleanly map on
other programming paradigms.

Block Type What They Say What I say

Synced patterns
Enduser

Previously Reusable Blocks

... you will be able to arrange blocks
in unlimited ways and save them as
patterns for use throughout your site,
directly within the editing experience.
You can also specify whether to sync
your patterns, so that one change
applies to all parts of your site, or to
keep them unsynced, so you can
customize each instance.

Patterns as symlinks: use one pattern
in many places.
Can be created by editors
Can be converted to regular patterns.

Block Variations
Developer

Block Variations is the API that allows
a block to have similar versions of it,
but all these versions share some
common functionality. Each block
variation is differentiated from the
others by setting some initial
attributes or inner blocks. Then at the
time when a block is inserted these
attributes and/or inner blocks are
applied.
A great way to understand this API
better is by using the embed block as
an example.

Blocks as a function: pass in
parameters and the block acts
differently.

Block Patterns
Enduser

Block Patterns are a collection of
predefined blocks that you can insert
into posts and pages and then
customize with your own content.
Using a Block Pattern can reduce the
time required to create content on
your site, as well as being a great way
to learn how different blocks can be
combined to produce interesting
effects.

Blocks group snapshot: insert a
combination of blocks in one go.

Good for templating layout sections,
not content (use innerblocks instead)

Blocks in Simple English

https://wordpress.org/news/2023/07/synced-patterns-the-evolution-of-reusable-blocks/

Dynamic Blocks
Developer

Dynamic blocks are blocks that build
their structure and content on the fly
when the block is rendered on the
front end.

Live data blocks.

Block Styles
Enduser

Block Styles allow alternative styles to
be applied to existing blocks. They
work by adding a className to the
block’s wrapper. This className can
be used to provide an alternative
styling for the block if the block style
is selected.

Block Styles!

Knowledge

Name Type Usage

parse_blocks(string $content) Function if you want to take a bunch of block
attributes and store them in meta on
save / generate stuff.
More info

pre_render_block Filter hook More info

render_block Filter hook More info

render_block_data Filter hook More info

A Crash Course in WordPress Block Filters

Filtering Block based content

More resources

https://developer.wordpress.org/reference/functions/parse_blocks/
https://developer.wordpress.org/reference/hooks/pre_render_block/
https://developer.wordpress.org/reference/hooks/render_block/
https://developer.wordpress.org/reference/hooks/render_block_data/
https://css-tricks.com/a-crash-course-in-wordpress-block-filters/#bonus-tip-render_block

Knowledge

If you use direnv you can automatically setup your project toolchain requirements. In the case of
WordPress projects this typically includes composer, PHP, node, npm.

Simply add the required php and composer version to the project's .envrc file:

To make this happen, you must add support for the switching by adding the following to
~/.direnvrc :

Auto linking project toolchains

#example project requirements

use php 7.4

use composer 2

Set node version

nvmrc=~/.nvm/nvm.sh

if [-e $nvmrc]; then

 source $nvmrc

 nvm use

fi

PATH_add node_modules/.bin

Usage: use php <version>

#

Loads the specified php version into the environent

#

use_php() {

 php --version | grep -q "PHP $1" || (brew unlink php@$1 && brew link php@$1 --force)

}

Usage: use composer <version>

#

Loads the specified composer version into the environent

#

use_composer() {

 composer --version | grep -q "version $1" || composer self-update --$1

https://direnv.net/

}

Knowledge

CDN for assets
Full page cache such as Batcache
Fragment caching for menus
Longcache for lower traffic sites.

Performance Strategy

Knowledge

When migrating content, suspend cache invalidation and flush the cache afterwards.

With that in mind, the following optimisation reduces the number of database queries to 1:

Performance

-		$post_data = [

-			'ID' => $post_id,

-			'post_content' => $content,

-];

-

-		$updated = wp_update_post($post_data, true);

+		$updated = $wpdb->update(

+			$wpdb->posts,

+			[

+				'post_content' => $content,

+],

+			[

+				'ID' => $post_id,

+]

+);

Knowledge

To download all attachment files from a remote site: from your local uploads directory:

WP-CLI

wp post list --post_type=attachment --field=_wp_attached_file | xargs -I {} wget -x -nH --cut-

dirs=2 "https://$DOMAIN/wp-content/uploads/{}"

wp-env is pretty nice and the .wp-env.json file makes me think it's most of the way there as a
generic local wp setup. of course it doesn't have redis / composer / support for multiple php
versions, caching plugins, and dev tools installed with it.

Requires nvm and docker.

First install docker-compose (this script doesn't work with docker compose):

Then install wp-env

Now it's ready:

Installing wp-env

Requirements

Installation

On Debian or derivatives

$ sudo apt install docker-compose -y

Install and use the latest LTS node

$ nvm install --lts

$ nvm use lts/*

Install wp-env as a global node LTS package

$ npm install --global @wordpress/env

Usage

$ cd ~/path/to/myplugin

Now you can use it anytime

$ wp-env start

WordPress development site started at http://localhost:8888/

https://github.com/nvm-sh/nvm#installing-and-updating
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository

The information is based on the official wp-env announcement

WordPress test site started at http://localhost:8889/

MySQL is listening on port 32773

MySQL for automated testing is listening on port 32772

$ wp-env stop

✔ Stopped WordPress. (in 3s 165ms)`

https://make.wordpress.org/core/2020/03/03/wp-env-simple-local-environments-for-wordpress/

