
Knowledge is a familiarity, awareness, or understanding of someone or something, such as facts,
information, descriptions, or skills, which is acquired through experience or education by
perceiving, discovering, or learning.

Nonces
Move a site to a new domain
Change root site
Blocks in Simple English
Filtering Block based content
Auto linking project toolchains
Performance Strategy
Performance
WP-CLI

Knowledge

WordPress nonces are not cryptographic nonces, as the latter are used only once, and the
former are not:

Nonces

Nonces are regenerated every 12h, but are valid for 24h, hence that code. (12h
= 1 tick, and they’re valid for two ticks)“

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://brain.vandragt.com/uploads/images/gallery/2020-05/image-1588328055896.png

Move a site workflow:

1. Delete existing domain mappings for the site.
2. wp search replace $old_url $new_url --all-tables; wp cache flush , avoiding trailing

slashes.
3. wp rewrite flush --url=$new_url; wp rewrite flush;

4. Login to the network site, edit the site, press Save Changes. (not sure why)
5. Verify site loads and login works.
6. re-add domain.
7. restart browsers because of cached redirects.

Move a site to a new domain

To change the root site in a multisite network:

Change root site

define('BLOG_ID_CURRENT_SITE', 1);

Plugins might not be compatbile with this change.

The following block types exist and this is what they do. I'm always getting confused by the
terminology, as I'm not a native English speaker and the terminology does not cleanly map on
other programming paradigms.

Block Type What They Say What I say

Synced patterns
Enduser

Previously Reusable Blocks

... you will be able to arrange blocks
in unlimited ways and save them as
patterns for use throughout your site,
directly within the editing experience.
You can also specify whether to sync
your patterns, so that one change
applies to all parts of your site, or to
keep them unsynced, so you can
customize each instance.

Patterns as symlinks: use one pattern
in many places.
Can be created by editors
Can be converted to regular patterns.

Block Variations
Developer

Block Variations is the API that allows
a block to have similar versions of it,
but all these versions share some
common functionality. Each block
variation is differentiated from the
others by setting some initial
attributes or inner blocks. Then at the
time when a block is inserted these
attributes and/or inner blocks are
applied.
A great way to understand this API
better is by using the embed block as
an example.

Blocks as a function: pass in
parameters and the block acts
differently.

Block Patterns
Enduser

Block Patterns are a collection of
predefined blocks that you can insert
into posts and pages and then
customize with your own content.
Using a Block Pattern can reduce the
time required to create content on
your site, as well as being a great way
to learn how different blocks can be
combined to produce interesting
effects.

Blocks group snapshot: insert a
combination of blocks in one go.

Good for templating layout sections,
not content (use innerblocks instead)

Dynamic Blocks
Developer

Dynamic blocks are blocks that build
their structure and content on the fly
when the block is rendered on the
front end.

Live data blocks.

Blocks in Simple English

https://wordpress.org/news/2023/07/synced-patterns-the-evolution-of-reusable-blocks/

Block Styles
Enduser

Block Styles allow alternative styles to
be applied to existing blocks. They
work by adding a className to the
block’s wrapper. This className can
be used to provide an alternative
styling for the block if the block style
is selected.

Block Styles!

Name Type Usage

parse_blocks(string $content) Function if you want to take a bunch of block
attributes and store them in meta on
save / generate stuff.
More info

pre_render_block Filter hook More info

render_block Filter hook More info

render_block_data Filter hook More info

A Crash Course in WordPress Block Filters

Filtering Block based content

More resources

https://developer.wordpress.org/reference/functions/parse_blocks/
https://developer.wordpress.org/reference/hooks/pre_render_block/
https://developer.wordpress.org/reference/hooks/render_block/
https://developer.wordpress.org/reference/hooks/render_block_data/
https://css-tricks.com/a-crash-course-in-wordpress-block-filters/#bonus-tip-render_block

If you use direnv you can automatically setup your project toolchain requirements. In the case of
WordPress projects this typically includes composer, PHP, node, npm.

Simply add the required php and composer version to the project's .envrc file:

To make this happen, you must add support for the switching by adding the following to
~/.direnvrc :

Auto linking project toolchains

#example project requirements

use php 7.4

use composer 2

Set node version

nvmrc=~/.nvm/nvm.sh

if [-e $nvmrc]; then

 source $nvmrc

 nvm use

fi

PATH_add node_modules/.bin

Usage: use php <version>

#

Loads the specified php version into the environent

#

use_php() {

 php --version | grep -q "PHP $1" || (brew unlink php@$1 && brew link php@$1 --force)

}

Usage: use composer <version>

#

Loads the specified composer version into the environent

#

use_composer() {

 composer --version | grep -q "version $1" || composer self-update --$1

}

https://direnv.net/

CDN for assets
Full page cache such as Batcache
Fragment caching for menus
Longcache for lower traffic sites.

Performance Strategy

When migrating content, suspend cache invalidation and flush the cache afterwards.

With that in mind, the following optimisation reduces the number of database queries to 1:

Performance

-		$post_data = [

-			'ID' => $post_id,

-			'post_content' => $content,

-];

-

-		$updated = wp_update_post($post_data, true);

+		$updated = $wpdb->update(

+			$wpdb->posts,

+			[

+				'post_content' => $content,

+],

+			[

+				'ID' => $post_id,

+]

+);

To download all attachment files from a remote site: from your local uploads directory:

WP-CLI

wp post list --post_type=attachment --field=_wp_attached_file | xargs -I {} wget -x -nH --cut-

dirs=2 "https://$DOMAIN/wp-content/uploads/{}"

