
Git (/ɡɪt/) is software for tracking changes in any set of files, usually used for coordinating work
among programmers collaboratively developing source code during software development. Its
goals include speed, data integrity, and support for distributed, non-linear workflows (thousands of
parallel branches running on different systems).

Push.Default Strategies
Per Repo hooks

Git

I was accidentally updating other branches when pushing my feature branch, and didn't realise
why.

Ever pushed to the wrong branch by mistake? what happens when you git push ? Is your
expectation that your local branch is pushed to the remote? This might not be the case:

What happens depends on your push.default configuration setting! List push default strategy that
is in use $ git config push.default for your project and $ git config --global push.default for the
fallback. To set the value, append it to the command.

There are 5 options, my understanding is that:

1. simple pushes the current branch to the remote branch with the same name, but
doesn't create the branch if it doesn't already exist. This is the default if you've
recently updated git.

2. current works like simple but creates the remote branch. Handy unless you're
accidentally pushing to the wrong remote.

3. upstream works like current, but pushes to the tracking branch which might not have
the same name. To illustrate this, you can set the tracking branch to a different
destination, for example: git branch --set-upstream-to=origin/my-experiment CI-3911-husky

There are two more strategies to be aware of:

4. nothing does not push anything. I don't know when you'd want to use this.
5. matching pushes ALL branches that exist remotely!

Realising that you're pushing dev/stage/any other branch with changes when pushing
your feature branch, and having to reset them, is not a fun day at the office. This gets
more complex when using multiple remotes! I would avoid this strategy.

The distinction is that all remote branches are potentially tracking branches, but the tracking
branch for your local branch does not have to be on a remote.

You can track local master for example for your feature work.

Push.Default Strategies

Push.Default Strategies

Tracking branch vs remote branch

Note that you can find out your tracking branch through git status , in general it should contain
the remote to avoid unintended consequences:

Finally a tip: please specify a remote after git push in your npm / composer scripts, so that if the
remote is set incorrectly for reasons your team is pushing to the right place.

Finally, Finally 111 latest: if you're not sure about any git command, append --dry-run to test it
non-destructively. And if you get stuck, I found the Flight Rules helpful.

Feel free to comment with any corrections or knowledge, everyone is learning :D

Git going!

$ git status

On branch CI-3911-husky

Your branch is up to date with 'origin/CI-3911-husky'.

Tips

Corrections

https://github.com/k88hudson/git-flight-rules

This is a little helper script that enables version controlled hooks, and per project hooks:

Examples are:

Files and folder ending in .local should be git-ignored.

Add the following helper script to your path:

Per Repo hooks

.hooks/pre-push # version controlled repo hook

.hooks/pre-push.local # overrides the previous hook

.hooks.local/pre-push # will be run after the hook above

Setup

#!/usr/bin/env bash

name: repo-hooks.sh

#{{{ Bash settings

abort on nonzero exitstatus

set -o errexit

abort on unbound variable

set -o nounset

don't hide errors within pipes

set -o pipefail

#}}}

#{{{ Variables

IFS=$'\t\n' # Split on newlines and tabs (but not on spaces)

SCRIPT_NAME=$(basename "${0}")

SCRIPT_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)

readonly SCRIPT_NAME SCRIPT_DIR

#}}}

if [$# -eq 1]; then

Add the following line to the hooks you want to enable this for in ~/.config/git/hooks/ :

Note: Hooks run under the current user, so don't run this on untrusted repositories that might
contain evil hooks!

 hook=$1

else

 echo "Error: please provide exactly one hook"

 exit 1

fi

if test -f ".hooks/$hook"; then

 if test -f ".hooks/$hook.local"; then

 echo "Source +hl hooks/$hook.local"

 source ".hooks/$hook.local"

 else

 echo "Source +h hooks/$hook.local"

 source ".hooks/$hook"

 fi

fi

if test -f ".hooks.local/$hook"; then

 echo "Source +l hooks/$hook.local"

 source ".hooks.local/$hook"

fi

repo-hooks.sh $(basename $0)

